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Abstract. Various spatial orders introduced by the instabilities of synchronous chaotic state of spatiotem-
poral systems are investigated by considering coupled map lattice and chaotic partial differential equation.
In particular, the motions of on-off intermittent states at the onset of the instabilities are studied in detail.
The chaotic desynchronized patterns can be described by a simple universal form, including three parts:
the synchronous chaos; a spatially ordered pattern, determined by the unstable mode of the reference
synchronous chaos; and on-off intermittency of the scale of this given pattern.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.45.Jn High-dimensional chaos
– 05.45.Xt Synchronization; coupled oscillators

Chaos synchronization has attracted great attention af-
ter the pioneering work of Pecora and Carroll [1–6]. In
this field one of the most important topics is the synchro-
nization of coupled spatiotemporal systems. Many papers
considering this problem have focused on the condition of
instability of synchronous chaos [7–9]. It has been made
clear that some interesting partially synchronous pat-
terns can appear when desynchronization of synchronous
chaos occurs [10,11], and on-off intermittency can be
observed between desynchronous chaotic oscillators (or,
desynchronous clusters of oscillators) [2,9–11]. However,
a very important aspect, i.e., the spatial ordering after
the desynchronization of chaos, has not yet been studied
apart from the brief discussion of [4], and this problem
is of crucial significance for the pattern formations from
chaotic spatiotemporal systems.

Suppose a stationary or periodic spatiotemporal sys-
tem is prepared around a certain instability condition, we
can then predict the spatiotemporal ordering after the in-
stability by classifying the type of the unstable mode. Now
we ask: can we observe any spatial ordering when a syn-
chronous chaos becomes to be desynchronized after certain
instability, and can we predict this ordering according to
the mode of instability if the answer to the first question
is positive? These problems remain unresolved after more
than a decade of the study of chaos synchronization, and
they are nontrivial since there is a strong intuitive impres-
sion that a desynchronous chaos (a basic chaotic motion

a e-mail: hugang@sun.ihep.ac.cn

plus random on-off intermittent bursts between various
desynchronous oscillators) looks rather “random” in both
time and space.

In this paper, we find that various spatial orders can
be clearly seen in desynchronized chaotic states at the on-
set of different instabilities, and these spatial orders can
be well predicted from the linear unstable modes of the
reference synchronous chaotic state. We use systems of
two-dimensional (2D) coupled map lattice (CML) and 1D
chaotic partial differential equation(PDE) as our models
to demonstrate the above results, and the validity of the
same analysis to coupled chaotic oscillators is also con-
firmed.

Let us start from a 2D CML model,

xn+1(j1, j2) = (1 − ε)f(xn(j1, j2)) +
ε

4
(f(xn(j1 + 1, j2))

+ f(xn(j1 − 1, j2)) + f(xn(j1, j2 + 1)) + f(xn(j1, j2 − 1)))
(1)

where we use periodic boundary condition of system size
N for both j1 and j2. The function f(x) is the logistic map
f(x) = ax(1−x). We first fix a = 3.7, at which the motion
of single map is chaotic, and N = 5 for simulations.

In Figure 1a we plot the largest three Lyapunov ex-
ponents LEs of the CML vs the coupling ε by numeri-
cally computing equation (1). It is clear that stable syn-
chronous chaos with a single positive LE λ1 ≈ 0.354
exists in the interval 0.864 ≈ ε1 < ε < ε2 ≈ 0.941, and
bifurcations to desynchronous chaos occur as the coupling
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Fig. 1. a = 3.7 and N = 5. The synchronous chaos is stable in the region 0.864 ≈ ε1 < ε < ε1 ≈ 0.941. (a) The three largest
LEs numerically computed from equation (1). The synchronous chaos becomes unstable when the second largest LE crosses
zero to positive. A long wave mode (1, 0) instability and a short wave mode (2, 2) instability of the synchronous chaos occur at
ε1 and ε2 , respectively. (b)–(f) ε = 0.833. (b) The schematic pattern of the desynchronous chaotic state. Each letter indicates a
cluster of sites having identical chaotic trajectory for all time after the transient. Different letters show desynchronized clusters.

(c) The spatial map at an arbitrary iteration n. ∆xn(j1, j2) = xn(j1, j2) − xn, xn = 1
5

5�

j1=1

xn (j1, j2). (d) The same as (c)

with many maps for different iterations plotted together. For showing pattern dynamics of the system we arbitrarily choose
three successive iterations and link the dots of each iteration to form a frame. The three frames show satisfactory similarity
(may with opposite orientations due to the opposite signs of scaling factor). (e) The same as (d) with all variables rescaled by
∆x′

n(j1, j2) = ∆xn(j1, j2)/∆xn(1, 1). (f) The same as (d) by considering iterations having much larger ∆xn(j1, j2).

crosses either the small (ε1) or the large (ε2) critical val-
ues when the second largest LE (i.e., the largest transverse
LE) crosses zero. The types of bifurcations at ε1 and ε2

can be analytically predicted by linearizing equation (1)
around the reference synchronous chaos. It can be easily
shown that a long wave (the mode kµ = 1, kν = 0 or
kµ = 0, kν = 1) instability occurs by decreasing ε to cross
the ε1 boundary; and a short wave (the mode kµ = 2,
kν = 2) instability appears by increasing ε over the ε2

threshold, where the linear modes kµ and kν are defined
as ηn(kµ, kν) =

∑
j1

∑
j2

eikµj1+ikνj2 [xn(j1, j2) − xn], with

xn being the trajectory of the synchronous chaos.

Let us first consider the case of the long wave in-
stability. We take ε = 0.833 and numerically compute
equation (1). The system motion is chaotic, and on-off
intermittency can be clearly observed between the desyn-
chronized sites. Now we go further to study the charac-
teristic features and spatial order of this on-off intermit-
tent chaotic motion. In Figure 1b we show schematically
the spatial pattern of the system, where different letters
show different clusters of sites having desynchronous mo-
tions, and sites indicated by a same letter have exactly
same chaotic trajectory for all time after the transient.
An interesting feature of this pattern is that all sites in a

same vertical line (with the same j1 index) are synchro-
nized to each other, and this structure confirms the long
wave instability of mode kν = 0. In order to investigate
the possible spatial order among the desynchronized clus-
ters in Figure 1b, we plot a spatial map of ∆xn(j1, j2) vs.
∆xn(j1 + 1, j2) in Figure 1c for an arbitrarily chosen it-
eration n, where ∆xn(j1, j2) = xn(j1, j2) − xn, with xn

being the spatial average xn = 1
5

5∑
j1=1

xn(j1, j2), and

the numbers j1s in the figure indicate the positions of
the (∆xn(j1, j2), ∆xn(j1 + 1, j2)) points. In Figure 1c,
all the points are arranged in a closed loop in the or-
der of their numbers. This arrangement, together with
the vertical-line-synchronization structure of Figure 1b,
coincides convincingly with the (1, 0) mode instability at
ε1 of Figure 1a. For confirming the generality of the pat-
tern structure of Figure 1c we present Figure 1d where
the map points same as Figure 1c for a large number of
iterations are plotted together. The map points in Fig-
ure 1d show that all the map patterns for different itera-
tions have very good similarity, especially marking three
frames for three sucessive iterations. For verifying this sim-
ilarity, we reorganize the points in Figure 1d by rescaling
all the variables as ∆x′

n(j1, j2) = ∆xn(j1, j2)/∆xn(1, 1),
and plot these rescaled map points in Figure 1e. All the
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Fig. 2. (a)–(c): The same as Figures 1b, d, and e, respectively, with ε = 0.949, and short wave instability of mode (2, 2)
considered. d, e, f: The same as Figures 1b, d, e, respectively, with a = 3.579, N = 9, ε = 0.795, and long wave instability of
mode (1, 0) considered.

points scattered in each line in Figure 1d concentrate to
a single point in (e), in a good approximation, indicat-
ing that the spatial patterns for different n resemble each
other in shape. Thus, the spatial structure of Figure 1c
is well maintained in the manner of similarity during the
desynchronized chaotic motion, though the sizes of the
corresponding patterns vary considerably and randomly in
the on-off intermittency. In Figure 1d the desynchronous
variables ∆xn(j1, j2) are chosen in a time interval where
their absolute values are rather small. The desynchronized
bursts may become large for some other time periods and
for the same parameters, nonlinearity can introduce cer-
tain deviation in the pattern similarity. However, all the
characteristic features demonstrated above are approxi-
mately kept. In Figure 1f, we do the same as Figure 1d by
taking the data in a time interval with considerably large
∆xn(j1, j2). It is clear that the similarity of the desyn-
chronous patterns still exists in Figure 1f, with certain
fluctuations.

We can define a quantity 〈|∆x|〉 =
1

5T

T∑
n=1

5∑
j1=1

|∆xn(j1, j2)| (where
T∑

n=1
is over period T

which is chosen sufficiently large as 2 × 106) to measure
the desynchronization strength. Numerical simulations
show that 〈|∆x|〉 has a scaling relation with ε as
〈|∆x|〉 ∝ (ε1 − ε), indicating a supercritical bifurcation.
And the same kind of bifurcations are also observed for
Figures 2 and 3.

The most important conclusion from Figures 1d and e
is: the spatiotemporal structure of the desynchronized
state at the onset of on-off intermittency can be repre-
sented by a universal form

xn(j1, j2) = xn + Sn∆x′
n(j1, j2), Sn = ∆xn(1, 1) (2)

where the motion of the entire CML can be described
by three quantities. First, xn represents the synchronous
chaos, “random” in time and homogeneous (regular) in
space; second, the multiple factor Sn indicates the collec-
tive behavior of on-off intermittency of the desynchronized
elements, which is again random in time. It is significant
that in form (2) both the chaotic function xn and the in-
termittency factor Sn do not include any spatial informa-
tion, i.e., both functions are scalar and space-independent.
All information of the space-dependence is included in
the third function ∆x′

n(j1, j2) only, called the normalized
desynchronized part, which is well ordered in space. And
this space order is determined by the mode of instability of
the synchronous chaos. For instance, for our model equa-
tion (1), this spatial order is explicitly given (numerically,
of course) in Figure 1e, which is dynamically determined
by the (1, 0) long wave mode instability, and the scalar
factor is nothing by the normalization factor ∆xn(1, 1).

Formula (2) is expected to be generally satisfied if
the control parameters are taken in a close vicinity of
desynchronization bifurcation from synchronous chaos.
For instance, it can be directly applied to the short wave
instability at ε2 of Figure 1a. In Figures 2a, b, c, we do
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Fig. 3. The numerical results of equations (3). a = 0.45, b = 2.0, c = 4.0, L = 10. (a) The spatiotemporal pattern of synchronous
chaos of equations (3), which is stable for D > Dc � 0.283. (b)-(f) D = 0.275. (b) A weakly desynchronous chaotic pattern(on-off

intermittency) of equations (3). (c) The chaotic trajectory of u(t) in equation (4) in the (x(t), y(t)) plane. x(t) = 1
L

� L

0
x(r, t)dr,

y(t) = 1
L

� L

0
y(r, t)dr. (d) The scaling function Sx(t) = ∆x(r0 , t), where ∆x(r, t) = x(r, t) − x(t), and r0 is such chosen that

|∆x(r, t)| has maximum for all the time. (e) x(r, t) vs. r of equations (3) for five different t’s arbitrarily chosen and represented
by circles, triangles, squares, disks, and stars, respectively. The space points r = r0 and r = L

2
+ r0 are the axes of a mirror

symmetry, which are kept in the entire on-off intermittency process. All the solid lines are functions x(t) + Sx(t) cos[ 2π
L

(r− r0)]
with Sx(t) = x(r0, t) − x(t). (f) The considerably distinctive distribution of (e) are normalized to an identical function by the
universal formula equation (4) as ∆u′(r) = [x(r, t)− x(t)]/∆x(r0 , t). The solid line is cos[ 2π

L
(r − r0)], which is typically induced

by the k = 1 mode instability, and perfectly coincides with the numerical data.

the same as Figures 1b, d and e, respectively, by taking
ε = 0.949, slightly larger than ε2 . The partial synchro-
nization of sites in lines parallel to the diagonal in (a)
coincides with the kµ = kν mode structure. And the fact
that the circles 1 to 5 in (c) are arranged in two loops
(i.e., in 4π angle) further confirms the (2, 2) short wave
mode instability. It is clear that the chaotic and the on-off
intermittent motion of Figure 2b can be also described by
form (2) in the way precisely the same as that of Figure 1
except that the space-dependent function ∆x′

n(j1, j2) is
now explicitly given by Figure 2c for the short wave spa-
tial ordering rather than by Figure 1e for the long wave
mode ordering. Moreover, equation (2) is also valid for
different system sizes. In Figures 2d, e, and f, we plot the
same figures as Figures 1b, d, and e, respectively, by tak-
ing N = 9 lattice and a = 3.579, ε = 0.795, in which
the long wave instability occurs at ε = ε1 ≈ 0.810. It is
obvious that all the features appearing in Figure 1 and
equation (2) are observed for the system with larger size.
Actually, equation (2) is valid for any finite system size
N > 1. For even larger N we need only to set a to be
closer to the accumulation point a∗ = 3.57... for obtaining
stable synchronous chaos.

The most significant point is that the idea demon-
strated in equation (2) is valid for different systems with
different spatial dimensions. We have tried both 1D and

2D coupled maps with different system sizes; and exam-
ined 1D and 2D coupled chaotic oscillators (e.g., coupled
Rossler and Lorenz oscillators); and also investigated 1D
chaotic PDEs. In all these cases we find equation (2), the
only changes are: we replace the discrete time n in equa-
tion (2) by continuous time t for coupled oscillators, and
replace both discrete time and space variables in equa-
tion (2) by continuous time and space ones for PDEs.
In the following we show the results for a 1D extended
chaotic Rossler system for manifesting the generality of
equation (2).

We take a diffusive 1D Rossler equation with ring
structure as our model

.
x = −(y + z) + D∂2x/∂2r,

.
y = x + ay + D∂2y/∂2r,

.
z = b + (x − c)z + D∂2z/∂2r,

x(r + L) = x(r), y(r + L) = y(r), z(r + L) = z(r). (3)

With a = 0.45, b = 2.0, and c = 4.0, the local dynamics
is chaotic. Without losing any generality, we keep L = 10.
We use the classical explicit difference method for numer-
ical computation and take space step ∆r = 0.1, time step
∆t = 0.002 < 0.25(∆r)2. The correctness of the numerical



Shihong Wang et al.: Spatial orders appearing at instabilities of synchronous chaos of spatiotemporal systems 575

results for simulating PDEs is verified by the stability of
the output in reducing the space and time steps. For suffi-
ciently large D the system must have stable homogeneous
chaos (Fig. 3a). By decreasing D the synchronous chaos
loses its stability for certain critical D = Dc ≈ 0.283 via
a long wave k = 1 mode instability (Fig. 3b). Our main
task is to investigate the system dynamics at the onset of
the instability D ≤ Dc.

The desynchronous chaotic pattern shown in Figure 3b
can be described by the universal form, a continuous ver-
sion of equation (2), as

u(r, t) = u(t) + S(t)∆u′(r),

∆u′(r) = cos
[
2π

L
(r − r0)

]
(4)

where three quantities together describe the sys-
tem evolution u(r, t) = (x(r, t), y(r, t), z(r, t)):
u(t) = (x(t), y(t), z(t)), x(t) = 1

L

∫ L

0
x(r, t)dr (the

same for y(t) and z(t)), manifests the synchronous
chaotic motion; S(t) = (Sx(t), Sy(t), Sz(t)) =
(∆x(r0 , t), ∆y(r0 , t), ∆z(r0 , t)) shows the scaling fac-
tor of the on-off intermittency of the desynchronous part,
with ∆x(r, t) = x(r, t) − x(t), and r0 is such chosen that
∆x(r0 , t) has maximum |∆x(r, t)| for any time; while
∆u′(r) specifies the spatial order and symmetry of the
desynchronous element, which is nothing but the coherent
spatial structure induced by the k = 1 mode instability of
the synchronous chaos. In Figure 3c we plot the trajectory
of u(t) in the (x(t), y(t)) plane, which is the orbit of
a chaotic Rossler oscillator. In Figure 3d, the scaling
factor Sx(t) = ∆x(r0 , t) is plotted, which shows typical
on-off intermittency. And in Figure 3e various spatial
distributions of x(r, t) for different t’s arbitrarily chosen
are plotted while in Figure 3f all the distinctive distribu-
tions of (e) are rescaled by ∆u′(r) = ∆x(r, t)/∆x(r0 , t),
which is perfectly coincided with an identical function

cos[ 2π
L (r − r0)]. Again we find that all “randomness”

is included in the function u(t) and the scaling factor
S(t), both are, however, space-independent. And all spa-
tial information is included in the normalized function
∆u′(r) = cos[ 2π

L (r − r0)], which is simple, explicit and
regular.

In conclusion we have obtained the following. When
a synchronous chaos of a spatiotemporal system loses its
stability via on-off intermittency, coherent and spatially
ordered pattern appears for the desynchronous elements.
These coherence and order are determined by the unstable
mode of the reference state and kept in the random alter-
nations of on and off states in the form of equations (2) and
(4). Here we use systems of 2D coupled map lattice and 1D
Rossler PDE as our models. The same results are found
for coupled chaotic oscillators. And equations (2) and (4)
are expected to be universal for the behavior of desyn-
chronization from synchronous chaos of extended different
systems with different dimensions and different sizes.
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